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Using a new microcanonical algorithm efficiently vectorized on a Cray XMP,  
we reach a simulation speed of 1.5 nsec per update of one spin, three times faster 
than the best previous method known to us. Data  for the nonlinear relaxation 
with conserved energy are presented for the two-dimensional lsing model. 
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1. I N T R O D U C T I O N  

Fast simulations of Ising systems are of interest for the treatment of various 
problems, such as spin-glasses, nucleation, or random field systems. 
Moreover, they serve as a benchmark for new algorithms and computers. It 
has hence been a challenge to find faster algorithms for this purpose. 

Before 1982 multi-spin-coding techniques on general-purpose 
computers (1'2) were the fastest. Then special-purpose machines ~3'4) held the 
record with 30 M updates/sec (MHz). Later, faster simulations (219 MHz) 
were performed on the array processor DAP. (5/ In the meantime progress 
has also been made on general (vector) computers, typically reaching 
100 MHz with the Metropolis algorithm. (6) 

In this paper a new algorithm is implemented that sets a new record of 
670 MHz. Our simulation is microcanonical and has strict energy conser- 
vation. It was proposed originally by Pomeau and Vichniac ~7) as an exam- 
ple for a cellular automaton. Since the algorithm is deterministic, random 
numbers are only required for making the initial configuration. Thus, 64 
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bits can simultaneously be updated in a loop that is automatically vec- 
torized on the Cray. 

In the next section we will present the algorithm and in the last section 
we discuss our results for the 2D Ising model. 

2. A L G O R I T H M  

The microcanonical algorithm described in Ref. 7 is the following: 
divide a square lattice (or hypercubic lattice in d dimensions) into two sub- 
lattices A and B and place a variable aA(O-~) having a value 0 or 1 on each 
site i of the sublattice A(B). Now, at each time step, a whole sublattice is 
simultaneously updated: at even (odd) time steps one updates the sublat- 
tice A(B) by (v) 

j = n n  of /  

where the Boolean function A(x) is given by A(O)= 1 and A(x r O)= O. In 
other words: 

IF AND ONLY IF THE SPIN i HAS 
AS MANY UP AS D O W N  NEIGHBORS,  

IT IS F L I P P E D  
(lb)  

but only on one sublattice at a time! (See Ref. 7.) 
The above model describes the dynamics of an Ising model where the 

energy is conserved. (7'8) One can also show that the basic axioms required 
for the transition rates of a Monte Carlo simulation (19) (e.g., that 
equilibrium is a fixed point of the Markov chain) are fulfilled. 

We have implemented the above algorithm on a square lattice on a 
Cray XMP in the following way: each bit of a 64-bit word corresponds to a 
spin; the linear dimension of the lattice is therefore a multiple of 128. 
Actually, the system is stored in four one-dimensional vectors 
corresponding to four sublattices. The system has periodic boundaries in 
both directions. In order to assure the periodic boundary conditions in 
up-down direction, a shadow line is attached at both the top and the bot- 
tom of the system. 

The initial configuration is chosen at a given energy, e.g., by randomly 
setting a certain number of spins on one sublattice to be one and all other 
spins to be zero. The update of Eq. (1) is then implemented by using the 
Boolean function 

f(al, a2, a3, a4) = [ ( a l • a 2 )  A ( a3Oa4) ]  v [ ( a l G a ~ )  A ( a z G a 4 ) ]  (2) 

? 
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where A,  V, and �9 are the logical functions "and," "or," and "exclusive 
or." If one wants to update a certain spin at site i, one chooses as 0-1 ..... 0-4 
its four nearest neighbor spins (which certainly are on different sublattices) 
and changes the spin at site i if f(0-1 ..... 0-4) = 1; otherwise one keeps the 
spin as it was. 

In our Fortran program the 64 spins of one word can consequently be 
updated simultaneously using only the bitwise logical functions AND, OR, 
and XOR. Spins in even (odd) lines are in vectors IA and IB (IC and ID) 
and spins in even (odd) columns are in vectors IB and IC (IA and ID). For  
instance, in the first line, consecutive spins in odd columns are placed in 
the first bit of ID(1), . . . , ID(M), then in the second bit, and so on 
(M = size/128). For  the updating of each of the four sublattice-vectors IA, 
IB, IC, and ID two separate loops are needed (that both automatically vec- 
torize on the CRAY), one for exceptional words where one of the 
neighbors is not a bit in the same position as the bit of the site to be 
updated and one for all other words. In the first type of loop an additional 
circular left shift operation is needed. As an example, we give the instruc- 
tions for the update of ID in a system 2N x 2N: 

M = N/64 
M M = M - 1  
J = l  
DO 1 I = 1,N 
I1 -- IA(J) 
I2 = IA(J + M) 
I3 = IC(J) 
I4 -- SHIFT(IC(J  + MM),63) 
ID(J) = XOR(ID(J) ,OR(AND(XOR(II , I2) ,XOR(I3,I4)) ,  

AND(XOR(II , I3) ,XOR(II , I4))) )  
1 J = J + M  

IF(M.EQ.1)GOTO 2 
DO 2 K = 2 , M  
J = K  
DO 3 I = 1,N 
IF -- IA(J) 
I 2 = I A ( J +  M) 
I3 = IC(J) 
I4 = IC(J - 1 ) 
ID(J) = XOR(ID(J) ,OR(AND(XOR(II , I2) ,XOR(I3,I4)) ,  

AND(XOR(II ,I3) ,XOR(I2,I4))))  
3 J = J + M  
2 C O N T I N U E  
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The magnetization IM can be calculated by using the bit count 
function P O P C N T  of the 114 Cray Fortran Compiler: 

NV = N * M  
IM = 0 
DO 4 1 = 1,NV 
IM = IM + POPCNT(IA(I ) )  + POPCNT(IB( I ) )  

+ POPCNT(IC( I ) )  + POPCNT(ID( I ) )  
4 C O N T I N U E  

A complete listing of the program is available from the author on request. 
By using the above program one obtains a speed of 1.48 nsec per 

update of one spin and 0.53 nsec per spin for the calculation of the 
magnetization for systems of length 1280. If the length is only 128, the 
speed decreases by about 20 %. If vectorization is suppressed, the process is 
about five times slower. 

3. R E S U L T S  A N D  C O N C L U S I O N  

In order to test the algorithm, we calculated the magnetization of the 
Ising model on a square lattice close to the critical energy Ec-- - x / 2  as 
shown in Fig. 1. The results are compared to the exact curve of an infinite 
system (see, e.g., Ref. 10). The temperature can be obtained from an exact 
relation to the energy. (1~ The critical point is well reproduced by the data 
(taking into account the rounding effects due to finite sizes). 

In the ordered phase the system can lock into limit cycles (since it is 
completely deterministic) which correspond to metastable states. In these 
cases the magnetization does not reach its equilibrium value. The average 
value over many samples, however, corresponds to the expected exact 
value. The existence of these metastabilities, which is reminiscent of a spin- 
glass, might be explained as follows: at low temperatures there are 
separated clusters of spin one and the energy is then not only globally, but 
also locally conserved. For  example, the cluster 

0000 0000 0000 0000 0000 0000 

0100 0110 0010 0010 0110 0100 

0010 0110 0100 0100 0110 0010 

0000 0000 0000 0000 0000 0000 

(3) 

has a limit cycle of five. These effects are, however, not important close to 
the critical temperature, where most simulations are made. 

Relaxation times close to the critical temperature Tc are longer for our 



Simulat ion A lgor i thm for Ising Models  149 

1.5 2.0 2.1 2.2 Tc 
1.0 ~ TI I I ' 

H 

0 . 8 -  

I 

0.6 

L 

/ 

2.3 T 2.4 
I 

T 

�9 1.4 E -1.2 
t I I 

-2.0 -1.8 -1.6 Ec 

Fig. 1. Magnetization against energy and temperature for the Ising model on a square lat- 
tice. ( ) The exact result. The length of the simulated systems is (�9 128, (A) 256, and 
(0 )  1280. The statistical error bars are made over up to ten samples. 

mic rocanon ica l  a lgor i thm than  for Me t ropo l i s  M o n t e  Car lo  [-about 6000 
upda tes  per  spin at  (T-To)lTd. = 0.01 in o rde r  to reach equ i l ib r ium] .  

The s tudy of  the re laxa t ion  close to Tc is an interes t ing subject  as such. 
Define the non l inea r  r e laxa t ion  t ime r of  the magne t i za t ion  M(t) for T >  Tc 
a s  

~ oe 

=~o M(t) dt (4) 

Then one expects  close to T o cri t ical  s lowing down(ll~: 

oc ( T -  To) z (5) 

where z is cal led the non l inea r  dynamica l  cri t ical  exponent .  Equiva len t ly  
one defines the l inear  dynamica l  exponen t  z/ for t ime cor re la t ions  in 
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Fig. 2. 
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Log-log plot of the nonlinear relaxation time against ( T -  Tc)/Tc. 

equilibrium. For  the case of energy conservation one expects for the linear 
dynamical exponent z t=  2 -  o(v. ~11) On the other hand, a relation between 
linear and nonlinear exponents has been proposed in Ref. 12: z = z t - B / v .  

So one might expect z = 2 - (c~ + ~)/v.  Figure 2 is a log-log plot of v against 
( T - T c ) / T  c. The slope gives z=2.1_+0.2. This value is not inconsistent 
with the value z = 1.875 predicted by the theory. 

In conclusion, we have described an algorithm that simulates 
microcanonically the Ising model and is about three times faster than the 
fastest simulation that exists presently. It is easily implementable within 
Fortran on a general-purpose computer. We have studied some 
microcanonical effects, such as the longer relaxation times and dynamical 
scaling with conserved energy. The algorithm can be easily applied to 
simulations of + / -  Ising spin-glasses and a little less efficiently to Potts 
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models. Compared to other microcanonical simulations, e.g., that of 
Ref. 13, our algorithm is at least ten times faster and has exact energy con- 
servation, not approximate energy conservation. 
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